Multi-party, Privacy-Preserving Distributed Data Mining Using a Game Theoretic Framework

نویسندگان

  • Hillol Kargupta
  • Kamalika Das
  • Kun Liu
چکیده

Analysis of privacy-sensitive data in a multi-party environment often assumes that the parties are well-behaved and they abide by the protocols. Parties compute whatever is needed, communicate correctly following the rules, and do not collude with other parties for exposing third party’s sensitive data. This paper argues that most of these assumptions fall apart in real-life applications of privacy-preserving distributed data mining (PPDM). This paper offers a more realistic formulation of the PPDM problem as a multi-party game where each party tries to maximize its own objectives. It develops a game-theoretic framework to analyze the behavior of each party in such games and presents detailed analysis of the well known secure sum computation as an example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Game Theoretic Approach toward Multi-Party Privacy-Preserving Distributed Data Mining

Analysis of privacy-sensitive data in a multi-party environment often assumes that the parties are well-behaved and they abide by the protocols. Parties compute whatever is needed, communicate correctly following the rules, and do not collude with other parties for exposing third party sensitive data. This paper argues that most of these assumptions fall apart in real-life applications of priva...

متن کامل

Technical Report TR-CS_01_07 A Game Theoretic Approach toward Multi-Party Privacy-Preserving Distributed Data Mining

Analysis of privacy-sensitive data in a multi-party environment often assumes that the parties are well-behaved and they abide by the protocols. Parties compute whatever is needed, communicate correctly following the rules, and do not collude with other parties for exposing third party sensitive data. This paper argues that most of these assumptions fall apart in real-life applications of priva...

متن کامل

A Game Theoretic Perspective Toward Practical Privacy Preserving Data Mining

Analysis of privacy-sensitive data in a multi-party environment often assumes that the parties are well-behaved and they abide by the protocols. Parties compute whatever is needed, communicate correctly following the rules, and do not collude with other parties for exposing third party sensitive data. This paper argues that most of these assumptions fall apart in real-life applications of priva...

متن کامل

Approval Sheet

Title of Dissertation: Privacy Preserving Distributed Data Mining based on Multi-objective Optimization and Algorithmic Game Theory Kamalika Das, Doctor of Philosophy, 2009 Thesis directed by: Dr. Hillol Kargupta Professor Department of Computer Science and Electrical Engineering Use of technology for data collection and analysis has seen an unprecedented growth in the last couple of decades. I...

متن کامل

Privacy-Preserving Distributed Data Mining Techniques: A Survey

In various distributed data mining settings, leakage of the real data is not adequate because of privacy issues. To overcome this problem, numerous privacy-preserving distributed data mining practices have been suggested such as protect privacy of their data by perturbing it with a randomization algorithm and using cryptographic techniques. In this paper, we review and provide extensive survey ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007